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Abstract. ‘Umbral calculus’ deals with representations of the canonical commutation relations.
We present a short exposition of it and discuss how this calculus can be used to discretize
continuum models and to construct representations of Lie algebras on a lattice. Related ideas
appeared in recent publications and we show that the examples treated there are special cases
of umbral calculus. This observation then suggests various generalizations of these examples.
A special umbral representation of the canonical commutation relations given in terms of the
position and momentum operator on a lattice is investigated in detail.

1. Introduction

Umbral calculus§ is an analysis of certain representations of the commutation relations

[Qi, x̂j ] = δij1I [Qi,Qj ] = 0 = [x̂i , x̂j ] (1.1)

in terms of operators on the algebra of polynomials in variablesxi, i = 1, . . . , n (see
[1, 2] for reviews). In particular, it provides us with representations by operators acting on
polynomials ofdiscretevariables. Let us assume thatQi, x̂j is such a representation and
let A(yi, ∂/∂yj )f (yk) = 0 be a differential equation onRn with a polynomial solutionf ‖.
Introducing multiplication operatorsyi , we can write it in the form¶

A(yi , ∂/∂yj )f (yk)1 = 0. (1.2)

The operatorsyi and ∂/∂yj do satisfy the commutation relations (1.1), of course. The
verification thatf (yk) solves the original differential equation is now translated into an
algebraic problem which only requires the abstract commutation relations (1.1), i.e. it does
not depend on the specific choice of representation. Definingf̃ (xk) := f (x̂k)1, then also

A(x̂i ,Qj )f̃ (xk) = 0 (1.3)

holds which is adifferenceequation. We have simply substituted

yi 7→ x̂i
∂

∂yj
7→ Qj. (1.4)

§ This terminology goes back to the nineteenth-century mathematician Sylvester who used the Latin wordumbra
to denote something which would nowadays be called a linear functional. See also [1].
‖ Here and in the following an expression such asf (yk) stands forf (y1, . . . , yn).
¶ In this expression the 1 plays the role of a ‘state’ on which we act with an operator algebra to generate an
irreducible representation of the latter.
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If f (yk) solves the original differential equation, theñf (xk) is a solution of the
corresponding difference equation.

For differential equations possessing polynomial solutions, the notion of quasi-exact
solvability has been introduced [3]. Several examples are provided by eigenvalue problems
in quantum mechanics. A corresponding example for the above discretization procedure
appeared recently in [4]. In section 4 we show that its underlying structure is umbral
calculus.

The above operator substitution yields a mapping of an eigenvalue equation for a
differential operator to an eigenvalue equation for a difference operator together with a
‘formal’ mapping of solutions. It seems that we have a general procedure for ‘isospectral
discretization’ of differential operator eigenvalue problems. The problem, however, is that
(besides for polynomials) the mapping of solutions in general only works at the level of
formal power series, but does not respect convergence properties.

Also, in the above-mentioned treatment [4] of eigenvalue problems one does not
really get a discretization of the original quantum mechanical problem since that involves
non-polynomial functions. For serious applications, therefore, we need an extension of
the procedure sketched above beyond polynomials and formal power series. Such a
discretization method could then be of interest for solving differential equations numerically.

The commutation relations of differential operatorsA(yi , ∂/∂yj ) andB(yi , ∂/∂yj ) are
preserved under the substitution (1.4). In this way one obtains representations of operator
algebras, in particular Lie and Hopf algebras, by operators acting on functions on a lattice.
An example appeared recently in [5] where representations of the Poincaré and theκ-
deformed Poincaré algebra [6] on a lattice were constructed. In section 5 we explain how
it fits into the umbral framework.

All this raises the question whether it is possible to understand (some of the) umbral
maps (1.4) on algebras of non-polynomial functions. In view of possible applications to
quantum mechanics, it would be of interest to haveQi, x̂j defined on the Hilbert space
of square summable functions on a lattice. Is it possible thatx̂i and −iQj (which as a
consequence of (1.1) satisfy the canonical commutation relations of quantum mechanics)
are selfadjoint operators and is (1.4) perhaps a unitary equivalence? Our work intends
to contribute to the clarification of such questions. An example of particular interest is
suggested by the work in [5]. The representation of the canonical commutation relations
which appeared there is investigated in detail in section 6.

Section 2 contains a brief introduction to our understanding of umbral calculus. It by no
means intends to cover the whole subject. An example treating symmetries on a lattice is
then presented in section 3. Another application is discussed in section 4, partly motivated
by [4]. In section 5 we slightly generalize the umbral framework of section 2. We also
comment on a representation of the Poincaré algebra on a lattice which appeared in [5]. Its
underlying representation of the canonical commutation relations is the subject of section 6.
It leads us to a framework for quantum mechanics on a lattice. Some conclusions are
collected in section 7.

2. A brief introduction to umbral calculus

In this section we recall some notions and results from umbral calculus. We refer to [2, 1] for
the corresponding proofs and further results. For simplicity, we restrict our considerations
to the case of a single ‘coordinate’x. All results extend to several (commuting) variables
in an obvious way.

An operatorO acting on the algebra (over a field of characteristic zero, likeR or C)
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of polynomials inx is shift-invariant if it commutes (for alla in the field) with the shift
operatorsSa (defined bySaf (x) = f (x + a)).

The Pincherle derivativeof an operatorO is defined as the commutator

O ′ := [O,x] = Ox − xO (2.1)

wherex is the multiplication operator, acting on polynomials inx by multiplication with
x. The Pincherle derivative of a shift-invariant operator is again a shift-invariant operator.
The umbral algebrais the algebra of all shift-invariant operators. The Pincherle derivative
is a derivation of the umbral algebra.

A delta operatorQ is a linear operator, acting on the algebra of polynomials inx,
which is shift-invariant and for whichQx is a non-zero constant. It can be shown that
Q′−1 exists (as a linear operator on the space of polynomials) and commutes withQ. If
we define

x̂ := xQ′−1 (2.2)

it follows that

[Q, x̂] = 1I (2.3)

where 1I stands for the identity operator. In this way each delta operatorQ provides us with
a representation of the canonical commutation relations on the algebra of polynomials inx.

A polynomial sequenceqk(x), k = 0, 1, 2 . . ., is a sequence of polynomials whereqk(x)
is of degreek. A polynomial sequence is calledbasic for a delta operatorQ if q0(x) = 1,
qk(0) = 0 wheneverk > 0, and

Qqk = kqk−1. (2.4)

It turns out that basic sequences are ofbinomial type, i.e. they satisfy

qk(x + y) =
k∑
`=0

(
k

`

)
q`(x)qk−`(y). (2.5)

The basic polynomial sequence forQ is given by

qk(x) = x̂qk−1(x) = x̂k1 (2.6)

which is known as theRodrigues formula.
An operator which maps a basic polynomial sequence into another basic polynomial

sequence is called anumbral operator([2], p 28). Defining

f̃ (x) := f (x̂)1 (2.7)

for a polynomialf , (2.6) shows that the operator˜ is an umbral operator.
An associative and commutative product is defined by

f̃ (x) ∗ h̃(x) := f (x̂)h(x̂)1. (2.8)

In particular,qk(x) ∗ q`(x) = qk+`(x). The delta operatorQ is a derivation with respect to
the ∗-product, i.e.

Q[p(x) ∗ q(x)] = (Qp(x)) ∗ q(x)+ p(x) ∗Qq(x) (2.9)

for polynomialsp andq.

Example 1.ForQ = d/dx we haveQ′ = 1I and thereforeqk(x) = xk which is the simplest
polynomial sequence. �
Example 2.Let Q = D/(D − 1) with D := d/dx. Then Q′ = −(D − 1)−2 and
qk(x) = [−x(D − 1)2]k1 are thebasic Laguerre polynomials[2]. �
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As pointed out in the introduction, we are particularly interested in the case where the
algebra of polynomials inx can be realized as an algebra of functions on a discrete set. In
the following two examples we may choosex to be the canonical coordinate function on an
infinite lattice with spacingsa (wherea is a positive real number). In the way outlined in the
introduction, both examples provide us with a prescription to translate functions onR and
differential operators into corresponding functions and operators on a lattice. The interesting
aspect is that this prescription not only maps a differential equation into a corresponding
difference equation, but it also allows us, in principle, to calculate the solutions of the
difference equation from those of the differential equation (see sections 4 and 6).

Example 3.Let Q = ∂+ where∂+ is the forward discrete derivativeoperator,

(∂+f )(x) = 1

a
[f (x + a)− f (x)] (2.10)

acting on a functionf . We find (Q′f )(x) = f (x + a) and thereforeQ′ = Sa, the shift
operator. Hence,

qk(x) = (xS−1
a )k1 = x(x − a) · · · (x − (k − 1)a) = x(k) (2.11)

wherex(k) is thekth (falling) factorial function†. Some formulae for the∗-product associated
with the discrete derivative delta operator can be found in the appendix. Analogous formulae
hold for thebackwarddiscrete derivative operator∂− which is formally obtained from∂+
replacinga by −a. �
Example 4.For thecentral difference operator[7]

Q = 1

2a
(Sa − S−a) = 1

2(∂+ + ∂−) (2.12)

we haveQf (x) = [f (x+ a)−f (x− a)]/(2a). Solving (2.4), one finds the basic sequence

qk(x) = x

k−1∏
n=1

(x + ka − 2na) (k > 1) (2.13)

andq0(x) = 1, q1(x) = x. Furthermore,

Q′ = 1
2(Sa + S−a) Q′′ = a2Q. (2.14)

Using the Rodrigues formula,

Q′−1qk(x) =
k∏
n=1

[x + (k + 1)a − 2na] (k > 0) (2.15)

which shows thatQ′−1 is indeed well-defined on polynomials inx. The operatorQ′−1 also
exists as a selfadjoint operator in the Hilbert space`2(aZ), see section 6. �
Example 5.Over a finite field there are finite-dimensional representations of the
commutation relation (2.3). OverZ3 the matrices

x =
( 0 0 0

0 1 0
0 0 2

)
Q =

( 0 1 0
0 0 1
1 0 0

)
(2.16)

provide us with an example which generalizes in an obvious way to the Galois fieldsGF(pn)

(wherep is a prime andn ∈ N). Though in this case we leave the usual umbral framework
since we consider a field which is not of characteristic zero, some basic constructions and
results remain valid. �
† For a = 1 andx ∈ N it counts the number of injective maps from a set ofn elements to a set ofx elements.
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As long as we restrict our considerations to operators acting on polynomials, everything
works smoothly. We are, however, also interested in more general classes of functions
and in particular power series. In general, an umbral operator like˜ does not preserve
convergence of such a series. The result of the application of an umbral operator to a
power seriesa priori only makes sense as aformal power series. A problem is then to
determine its domain of convergence (which may be empty) and a possible continuation. It
seems that little is known about the convergence of power series obtained via umbral maps.

3. Symmetry operators on a lattice: an example

In this section we generalize the example 3 of section 2 ton-dimensions. As an application
of the umbral method, a representation of the Lie algebra ofSO(3) on a lattice is then
presented. Letx1, . . . , xn be the canonical coordinate functions on ann-dimensional
(hypercubic) lattice with spacingsai . We define delta operators

(Qif )(x) := 1

ai
[f (x1, . . . , xi−1, xi + ai, xi+1, . . . , xn)− f (x)] (3.1)

acting on functions ofx = (x1, . . . , xn). The corresponding Pincherle derivatives are the
shift operatorsSi acting on functions as follows,

(Sif )(x) := f (x1, . . . , xi−1, xi + ai, xi+1, . . . , xn). (3.2)

The operatorsx̂i = xiS
−1
i and Qj then satisfy the commutation relations (1.1) on the

algebra of polynomials in the variablesx1, . . . , xn.
As outlined in the introduction, given a representation of a Lie algebra in terms of the

operatorsyi and ∂/∂yj acting on functions onRn, (1.4) maps it into a representation by
operators acting on functions on a lattice. For the angular momentum operators in three
dimensions this means

Li = −i
∑
j,k

εijkyj
∂

∂yk
7→ L̃i := −i

∑
j,k

εijkx̂jQk (3.3)

where

L̃if (x) = −i
∑
j,k

εijkxj (Qkf )(x − aj ) (3.4)

using the notationx − aj = (x1, . . . , xj−1, xj − aj , xj+1, . . . , xn).
What are the corresponding ‘spherically symmetric’ functions on the lattice? We have

to find the solutions ofL̃if (x) = 0. From the corresponding solution in the continuum
case, we know thatf should depend onxk only through

∑3
k=1 x̂2

k1 = ∑3
k=1 xk(xk − ak)

or ∗-products of this expression. The set of lattice points determined by the equation∑3
k=1 xk(xk − ak) = constant therefore constitutes the analogue of the 2-sphere in the

continuum case. Of course, only for special values of the constant it will be non-empty.
For a lattice with equal spacings in all dimensions, the mappingsxk ↔ x` andxk 7→ a− xk
leave the above expression invariant and thus help to construct the ‘lattice spheres’.

4. Isospectral discretization of eigenvalue equations via umbral calculus?

In [3] differential equations were called ‘quasi-exactly solvable’ if there is at least one
polynomial solution and ‘exactly solvable’ if there is a complete set of polynomial solutions.
The relevance for physics has been established in a series of papers [8] where quantum
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mechanical eigenvalue problems were collected which can be reduced to equations having
polynomial eigenfunctions via anansatzof the form

ψ(y) = φ(y)f (y) (4.1)

with a fixed non-polynomial functionf on R. The most familiar example is provided by
the (one-dimensional) harmonic oscillator. In this case

ψ(y) = φ(y)e−y2/2 (4.2)

converts the Schrödinger equation into a differential equation forφ which has the Hermite
polynomials as a complete set of solutions. Another example is the radial part of the
Schr̈odinger equation for a hydrogen atom.

In [4] a discretization procedure has been proposed for a differential operator eigenvalue
equation possessing polynomial solutions such that the resulting difference equation has the
same spectrum. It corresponds to an umbral map in the sense of section 2 with the choice
Q = ∂+, the forward discrete derivative operator†. However, the procedure does not work
well, in general, when applied to the original eigenvalue problem which we started with.
Though we do get a discrete eigenvalue problem in this way which is naively‡ isospectral,
problems arise when we try to translate the non-polynomial solutions. This will be illustrated
with the following examples.

Example 1.We apply the umbral map to a simple differential equation,

d

dy
f (y) = kf (y) 7→ Qf̃ (x) = kf̃ (x). (4.3)

From the solutionf (y) = exp(ky) of the differential equation the corresponding solution
of the difference equation on the r.h.s. of (4.3) is then obtained as follows,

f̃ (x) = f (x̂)1 =
∞∑
`=0

k`

`!
x(`). (4.4)

Though we would like to choosex as the canonical coordinate function on the latticeaZ,
it may be helpful at this point to consider it as a coordinate function onR in view of a
possible analytic continuation of the power series obtained from the umbral procedure.A
priori , we obtainf̃ only as aformal power series. Forreal k, the series in (4.4) (which is
a special case of aNewton series) converges everywhere on the real line if|ka| < 1. For
|ka| > 1 the series is everywhere divergent, except for non-negative integer multiples ofa

(see [11], for example). The difference equation on the r.h.s. of (4.3) has no non-vanishing
solution fork = −1/a. For all other values ofk ∈ C the solutions are given by

f̃ (na) = f̃ (0)(1 + ka)n. (4.5)

With f̃ (0) = 1 this extends the series obtained above (fork > −1/a). �
Example 2.Let us now apply the umbral map to the Hamiltonian of the harmonic oscillator,

H = −1

2

d2

dy2
+ 1

2y2 7→ H̃ = − 1
2Q

2 + 1
2x̂2. (4.6)

† The umbral framework provides us with several alternatives, of course, which have not been considered in [4].
‡ In order to formulate a well-defined eigenvalue problem, we have to specify a suitable function space in which
we are looking for solutions. Each eigenfunction of a differential operator is mapped to an eigenfunction of the
corresponding discrete operator (or at least a formal power series which satisfies the discrete eigenvalue equation).
Note, however, that the discrete equation may have additional solutions. In particular, this is the origin of boson
or fermion doubling in lattice-field theories (cf [9, 10]).
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The eigenvalue equation forH is then translated into the following eigenvalue equation for
H̃ ,

H̃ ψ̃(x) = 1
2[−Q2ψ̃(x)+ x(x − a)ψ̃(x − 2a)] = Eψ̃(x) (4.7)

which is a difference equation (Q = ∂+). From the solutionψ0(y) = exp(−y2/2) of the
original eigenvalue problem we obtain the solution

ψ̃0(x) =
∞∑
`=0

(−1)`

2``!
x(2`) (4.8)

of the difference equation (4.7) withE = 1
2 as a formal power series. Using

x(2`+2)

2`+1(`+ 1)!
= (x − 2`a)(x − 2`a − a)

2(`+ 1)

x(2`)

2``!
(4.9)

the quotient criterion shows that the series is everywhere divergent, except at values ofx

which are non-negative integer multiples ofa (where the series terminates). Equation (4.8)
thus only determines a solution of the difference equation

x(x − a)ψ̃(x − 2a) = 1

a2
[ψ̃(x)− 2ψ̃(x + a)+ ψ̃(x + 2a)] + ψ̃(x) (4.10)

on the non-negative part ofaZ. The l.h.s. of (4.10) vanishes forx = 0 andx = a. Also
the r.h.s. vanishes if we calculate the corresponding values ofψ̃ using (4.8). Our solution
can therefore be extended to the whole ofaZ. But the extension is not unique sinceψ̃(−a)
and ψ̃(−2a) can be chosen arbitrarily. This shows that the difference equation has more
independent solutions than the differential equation we started with. The umbral-mapping
of ψ0 can, however, be completed to yield a solution of the difference equation which
exists everywhere onaZ. This is done by expandingψ0 into power series about negative
multiples ofa and acting with̃ on these series.

The higher eigenfunctions of the harmonic oscillator are products of Hermite
polynomials withψ0,

ψn(y) = Hn(y)ψ0(y). (4.11)

Now ψ̃n(x) is obtained by replacing the ordinary product by the∗-product (cf the appendix),
ψ0(y) by ψ̃0(x) as given above, and the Hermite polynomials by the ‘discrete Hermite
polynomials’. The latter are obtained from the generating function

F̃ (x, s) =
∞∑
`=0

H̃`(x)

`!
s(`) =

∞∑
`=0

∑̀
k=1

2`−k(−1)k

k!(`− k)!
s(`+k)x(`−k) (4.12)

by H̃n(x) = (d/ds)nF̃ (x, s)|s=0. �

5. Some more umbral calculus

There is a generalization of the calculus described in section 2. Given a representation of
the commutation relation (2.3) by operatorsQ andx̂ as in section 2, and given an operator
A on the space of polynomials which commutes withQ, then the new operator̂x + A

together withQ also satisfies the commutation relation. In the following, letx̂ denote such
a more general choice (than the special one in (2.2)). Defining

sk(x) := x̂k1 (5.1)
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one finds

Qsk = ksk−1 (5.2)

by use of the commutation relation (2.3). Such a polynomial sequencesk is called aSheffer
set for the delta operatorQ in the umbral literature. The basic polynomial sequenceqk
for a delta operatorQ is a special Sheffer set. Ifsk is a Sheffer set forQ, then there is
an invertible shift-invariant operator which maps the Sheffer polynomialssk to the basic
polynomialsqk. Furthermore,

sn(x) =
n∑
k=0

(
n

k

)
sk(0)qn−k(x). (5.3)

We refer to [2] for proofs and further results. Again, we definef̃ (x) := f (x̂)1.
We have to stress that not all umbral results established for the special choice (2.2) for

x̂ translate to the more general case considered in this section. In general,sk(0) 6= 0 and
the sk are not binomial.

A particularly interesting choice for̂x turns out to be

x̂ = 1
2(xQ

′−1 +Q′−1
x). (5.4)

From umbral calculus we know thatQ′−1 commutes withQ. One can then easily verify that
[Q, x̂] = 1I. The advantage of (5.4) over (2.2) is that it is more symmetric and thus opens
the chance to turn̂x and iQ into Hermitian operators on a Hilbert space†. ForQ = d/dx
we havesk(x) = qk(x). In case of the (forward) discrete derivative operator one finds

sk(x) = 1

2k
(xS−1

a + S−1
a x)k1 = (x − 1

2a)(x − 3
2a) · · ·

(
x − 2k − 1

2
a

)
. (5.5)

Another realization of (5.4), involving the central difference operator, will be the subject of
the following examples and the next section. In that case, we have

s0(x) = 1, s1(x) = x, s2(x) = x2 − a2

2
, . . . (5.6)

using (2.14) andQ1 = 0.

Example 1.Let us consider again the example of the harmonic oscillator. Using (5.4) and
the central difference operator (2.12), the corresponding Schrödinger equation is umbral
mapped to

i
∂

∂t
ψ̃(x) = 1

2

[
−Q2 +Q′−2

(
x2 − a2

2

)
+ 2a2Q′−3Qx + 5

4
a4Q′−4Q2

]
ψ̃(x) (5.7)

where on the r.h.s. we have naively commuted all the non-local operatorsQ′−1 to the left.
Acting with Q′4 on this equation results in a finite difference equation (with respect to the
space coordinates). However, if we discretize the time‡ in order to solve the initial value
problem for the above equation on a computer, calculation of the wavefunction at the next
time step requiresQ′−1. But to explore an equation of the type above numerically, we
have to use an approximation with afinite lattice. Choosing periodic boundary conditions
(i.e. a periodic lattice), there are convenient formulae forQ′−1. On a periodic lattice with
N = 2m sites wherem is odd, the equation

Q′−1 =
m−1∑
k=0

(−1)kS2k+1
a (5.8)

† If x is Hermitian andQ anti-Hermitian, thenQ′ andQ′−1 are Hermitian and thus also the operator in (5.4).
‡ This can be achieved via an umbral map, of course.
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holds†. For oddN one finds instead

Q′−1 =
(N−1)/2∑
k=0

(−1)k+(N−1)/2S2k
a +

(N−1)/2−1∑
k=0

(−1)kS2k+1
a . (5.9)

In the following section, the quantum mechanical setting behind (5.7) is investigated more
rigorously. �
Example 2.In section 3 we determined the ‘lattice spheres’ with respect to some umbral
representation. Instead of (2.2) here we choose

x̂i := xi (Si + S−1
i )−1 + (Si + S−1

i )−1xi (5.10)

with the shift operators defined in (3.2). This means that we consider (5.4) generalized to
several dimensions with central difference operators

Qi = 1

2ai
(Si − S−1

i ). (5.11)

UsingQ′′
i = a2

i Qi andQi1 = 0, we find the following equations for ‘lattice spheres’ in
three dimensions,

3∑
i=1

(x̂i )
21 =

3∑
i=1

[
(xi)

2 − a2
i

2

]
= constant. (5.12)

A spherically symmetric potential on the lattice is then a function which only depends on
∗-products of

∑3
i=1[(xi)2 − a2

i /2]. �
Example 3.A familiar representation of the Poincaré algebra is

Pµ = −i
∂

∂yµ
Mi =

∑
j,k

εijkyjPk Li = y0Pi − κyiP0. (5.13)

These operators act on functions onR4 (with canonical coordinatesyµ). The commutation
relations are then preserved when we perform in the expressions (5.13) the substitutions

yi 7→ x̂i
∂

∂yi
7→ Qi i = 1, 2, 3 (5.14)

with the operators defined in (5.10) and (5.11). In this way we obtain a representation of
the Poincaŕe algebra on a lattice with spacingsai (and continuous time as long asy0 and
P0 are kept unchanged)‡. The quadratic Casimir operator of the Poincaré algebra in this
representation is

C = −∂2
t +

∑
k

Q2
k (5.15)

where∂t := ∂/∂x0. There is, however, a drawback of the representation presented above
and also those given in [5]. As pointed out in [9], the Klein–Gordon equation built with
the operator (5.15) suffers from a boson doubling problem analogous to the more familiar
fermion doubling problem in lattice-field theory (see [10], for example). This leaves us
with a Poincaŕe-invariant theory with eight species of bosons. If the time dimension is also
discretized, one obtains 16 species. The relation between this Klein–Gordon equation and
the Dirac equation for ‘naive lattice fermions’ is the same as in the continuum,

(iγ 0∂t + iγ kQk −m)(iγ 0∂t + iγ kQk +m) = −∂2
t +

∑
k

Q2
k −m2. (5.16)

† For evenm, Q′ is not invertible.
‡ See also [5]. A representation on a four-dimensional space–time lattice is obtained by extending the map (5.14)
to y0 and∂/∂y0.
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The representation of the Poincaré algebra acting on continuum spinor fields is mapped via
(5.14) to a representation on the lattice which leaves the lattice Dirac equation invariant.�

6. Via umbral calculus to quantum mechanics on a lattice

In this section we investigate the umbral discretization method with the central difference
operatorQ = (Sa − S−a)/(2a) and the symmetric operator (5.4). It will be shown that
they define selfadjoint operators on the Hilbert space`2(aZ), the space of square summable
functions on the infinite lattice with spacingsa. We thus have a rigorous framework to
explore the ‘umbral map’.

By standard argumentsx is selfadjoint with domain [f ∈ `2(aZ)|xf ∈ `2(aZ)]. The
Fourier transformationf 7→ F where

f (x) = 1√
2π

∫ π/a

−π/a
F (k)eikx dk (6.1)

is an isomorphism̀ 2(aZ) → L2
π/a. Here and in the followingL2

b stands forL2([−b, b]),
the space of square-integrable functions on the interval [−b, b]. It is more convenient for
us to define the domain ofx now as follows,

Dx =
{
f ∈ `2(aZ)|F abs. cont., F

(
−π
a

)
= F

(π
a

)
,

dF

dk
∈ L2

π/a

}
. (6.2)

The action ofx on `2(aZ) then corresponds to the action of id/dk on the domain inL2
π/a

specified above†. Its spectrum is [na|n ∈ Z].
Next we note that−iQ is a bounded selfadjoint operator on`2(aZ). In L2

π/a it acts by
multiplication with sin(ak)/a. Concerning the umbral map we can conclude the following,

operator : − id/dy 7→ −iQ

spectrum :R{λ ∈ R||λ| 6 1
a
}

eigenfunctions :fλ(y) = exp(iλy) 7→ f̃λ(x) = exp[i(x/a) arcsin(λa)].

The eigenfunctions of−iQ can indeed be calculated directly from the power series
expansions for those of−id/dy (with the help of [7], section 6.5). The spectrum of−iQ is
bounded, however, in accordance with the boundedness of the operator. Only in the limit
a → 0 we recover the full spectrum of the continuum momentum operator.

For f ∈ Dx we haveQf ∈ Dx. The operatorQ′ = [Q,x] = (Sa + S−a)/2 is then
defined onDx. It is bounded and can be extended to a selfadjoint operator on`2(aZ).
Q′f = 0 for f ∈ `2(aZ) implies f = 0. HenceQ′−1 exists onDQ′−1 = Q′(`2(aZ))
and is selfadjoint (lemma XII.1.6 in [12]). The Fourier transform ofQ′ acts in L2

π/a

by multiplication with cos(ak). The operatorQ′−1 therefore acts by multiplication with
1/ cos(ak) on the domain{F ∈ L2

π/a|F(k)/ cos(ak) ∈ L2
π/a}.

It remains to investigate the operatorx̂ = (xQ′−1 +Q′−1x)/2 which is Hermitian on
the dense domain

Dx̂ = [f ∈ Dx ∩ DQ′−1|xf ∈ DQ′−1,Q′−1f ∈ Dx]. (6.3)

Without any calculations we can immediately conclude the following. The operatorx̂2 can
be defined on a dense domain on which it commutes with complex conjugation. According
to theorem XII.4.18 and corollary XII.4.13(a) in [12] this operator has selfadjoint extensions.
Let us recall a theorem due to Rellich and Dixmier (see Theorem 4.6.1 in [13]).

† The latter is a standard textbook example of a selfadjoint operator. Via Fourier transformation it is mapped to
a selfadjoint operator onDx ⊂ `2(aZ).
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Theorem. Let q andp be closed Hermitian operators on a Hilbert spaceH such that
(1) [p, q] = −i on a subset� ⊂ Dq ∩Dp dense inH which is invariant underq andp,
(2) p2 + q on� is essentially selfadjoint.
Then p and q are selfadjoint and unitarily equivalent to a direct sum of Schrödinger

representations. �
An isomorphism̀ 2(aZ) ∼= L2(R) maps the operatorŝx and−iQ to corresponding operators
in L2(R). These operators cannot be unitarily equivalent to those of the Schrödinger
representation since the latter are both unbounded. Besides (2), the operatorx̂ (which has a
closed Hermitian extension [12]) and−iQ fulfil all assumptions of the last theorem. Taking
into account that(−iQ)2 is selfadjoint and bounded, it follows thatx̂2 is not essentially
selfadjoint. Together with our previous result this means thatx̂2 has inequivalent selfadjoint
extensions.

We now turn to a closer inspection of the operatorx̂ which, via Fourier transformation,
is translated into the operator

X := i
2

(
1

cos(ak)

d

dk
+ d

dk

1

cos(ak)

)
(6.4)

with domainDX ⊂ L2
π/a determined by (6.3). This operator is singular atk = ±π/(2a)

and functions inDX vanish at these points. This suggests to look for selfadjoint extensions
of X for which all the functions in their domains share this property†. Such selfadjoint
extensions ofX are then sums of selfadjoint extensions of the following two operators,
(a)X(1) is X restricted to

DX(1) :=
{
F ∈ L2

π/2a

∣∣∣∣ F(k)

cos(ak)
abs. cont., F

(
− π

(2a)

)
= 0 = F

(
π

(2a)

)
, XF ∈ L2

π/2a

}
(b) X(2) is X restricted to

DX(2) :=
{
F ∈ L2

∪

∣∣∣∣ F(k)

cos(ak)
abs. cont., F

(
− π

(2a)

)
= 0 = F

(
π

(2a)

)
,

F
(
−π
a

)
= F

(π
a

)
, XF ∈ L2

∪

}
where

L2
∪ := L2

([
−π
a
,− π

(2a)

]
∪

[
π

(2a)
,
π

a

])
.

In both cases we perform a change of coordinate

p = 1

a
sin(ak). (6.5)

Then, with the separation

F(k) =
√

| cos(ak)|χ(p) (6.6)

we find for ` = 1, 2,

(X(`)F )(k) = i
√

| cos(ak)| d

dp
χ(p). (6.7)

† The following elementary analysis does not exhaust the selfadjoint extensions ofX. The problem under
consideration constitutes a special case to which the general theory developed in [14] can be applied. We are
grateful to one of the referees for pointing out these references. The following steps leading to (6.11) should
actually be reversed, i.e. starting from the class of selfadjoint operators (6.11) we obtain selfadjoint extensions of
X. Our presentation displays the heuristics which is here (as often) contragredient to the mathematical logic.
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The two operatorsX(`) now both translate into the more familiar one†

i
d

dp
on

{
χ ∈ L2

1/a

∣∣∣∣χ abs. cont., χ

(
−1

a

)
= 0 = χ

(
1

a

)
,

dχ

dp
∈ L2

1/a

}
. (6.8)

Let F(1) andF(2) denote the restrictions ofF ∈ DX to [−π/a, π/a] and [−π/a,−π/(2a)] ∪
[π/(2a), π/a], respectively. Then

(F, F ′) =
∫ π/a

−π/a
F (k)∗F ′(k) dk = (χ(1), χ

′
(1))+ (χ(2), χ

′
(2)) (6.9)

where

(χ(`), χ
′
(`)) =

∫ 1/a

−1/a
χ(`)(p)

∗χ ′
(`)(p) dp (` = 1, 2). (6.10)

The selfadjoint extensions of the operator (6.8) are known to be given by

Dα = i
d

dp
on Dα :=

{
χ ∈ L2

1/a

∣∣∣∣χ abs. cont., χ

(
1

a

)
= e2π iαχ

(
−1

a

)
,

dχ

dp
∈ L2

1/a

}
(6.11)

whereα ∈ [0, 1) [15]. A complete orthonormal set of eigenfunctions ofDα is

χαn (p) :=
√
a

2
exp[−i(α + n)πap] n ∈ Z (6.12)

andDα has a pure point spectrum [(α + n)πa|n ∈ Z]. A selfadjoint extension of the
operatorx̂ is now obtained by choosing any pair from the set of operatorsDα. It then
defines operatorsX(1)α1

andX(2)α2
and in this way a selfadjoint extension̂xα1,α2 of x̂ with

spectrum [(α1 + n)πa|n ∈ Z] ∪ [(α2 + n)πa|n ∈ Z]. The operatorx̂α1,α2 has the complete
set of eigenfunctions

f
(α1)

n,1 (x) = 1

2

√
a

π

∫ π
2a

− π
2a

√
cos(ak) exp[−i(α1 + n)π sin(ak)+ ikx] dk (6.13)

f
(α2)

n,2 (x) = 1

2

√
a

π

(∫ − π
2a

− π
a

+
∫ π

a

π
2a

)√
| cos(ak)| exp[−i(α2 + n)π sin(ak)+ ikx] dk (6.14)

in `2(aZ). For the umbral map we can draw the following conclusions,

operator :y 7→ x̂α1,α2

spectrum :R{(α` + n)πa|n ∈ Z, ` = 1, 2}
eigenfunctions :fλ(y) = δ(y − λ)f

(α1)

n,1 , f
(α2)

n,2 .

Of course, in this case we have no method to calculate eigenfunctions ofx̂α1,α2 directly
from the generalized eigenfunctionsδ(y − λ) of the Schr̈odinger operatory.

Slightly more complicated is the case of the operatorx̂2. Following our treatment of
the operator̂x itself, a set of two selfadjoint extensions of the operator−d2/dp2 determines
a selfadjoint extension of̂x2. The domains of selfadjoint extensions of−d2/dp2 in L2

1/a
have the form

Db.c. =
{
χ ∈ L2

1/a

∣∣∣∣χdiff .,
dχ

dp
abs. cont.,

d2χ

dp2
∈ L2

1/a, b.c.

}
(6.15)

whereb.c. stands for a certain choice of boundary conditions, such asχ(−1/a) = 0 =
χ(1/a) (see [15] for other choices).

† Via this transformation the operatorQ is mapped to the ‘position operator’ inL2
1/a .
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Example. Let us consider the equationaψ0 = κψ0 wherea = ∂/∂y+y is the annihilation
operator for the one-dimensional harmonic oscillator, andκ ∈ C. The umbral map replaces
a by Q+ x̂. Choosing forx̂ a selfadjoint extension, we have to consider

(Q+ x̂α1,α2)ψ̃0 = κψ̃0. (6.16)

We write the Fourier transform of̃ψ0 as 90(k) = √| cos(ak)|χ0(p) with p given by
(6.5), separately on [−π/(2a), π/(2a)] and [−π/a,−π/(2a)] ∪ [π/(2a), π/a]. Now (6.16)
translates on both subsets of [−π/a, π/a] to (p + d/dp)χ0 = κχ0 with the solution
χ0(p) = C exp(κp − p2/2) whereC is a constant. ForC 6= 0 one findsχ0 ∈ Dα with
α = −iκ/(πa). This restrictsκ sinceα ∈ [0, 1). Furthermore,α1 = α2 = α. Application
of the (umbral mapped) creation operator−Q + x̂α,α to ψ̃0 leavesDx̂α,α sincepχ0(p) is
not in Dα. The algebraic construction of the eigenfunctions for the harmonic oscillator
therefore does not survive after the umbral mapping. The problem actually appears already
in rewriting the Hamiltonian as

H̃α = 1
2(−Q2 + x̂2

α,α) = 1
2(−Q+ x̂α,α)(Q+ x̂α,α)+ 1

2[Q, x̂α,α]. (6.17)

The point is that [Q, x̂α,α] = 1I does not hold on the domain ofx̂α,α. As a consequence,
there is no simple relation between the spectra ofH̃α and 1

2(−Q+ x̂α,α)(Q+ x̂α,α).
In the way described above, the eigenvalue problem for a selfadjoint extension of the

HamiltonianH̃ = (−Q2+x̂2)/2 reduces inp-space to (twice) the eigenvalue problem for the
Hamiltonian of the ordinary harmonic oscillator restricted to the finite interval [−1/a, 1/a]
with the respective boundary conditions. A choice among the many different selfadjoint
extensions ofH̃ should be determined by the specification of the physical system (on the
lattice) which we intend to describe. It is not obvious for us, however, what a natural choice
could be. �

An interesting aspect of the representation of the canonical commutation relations
considered in this section is the fact that it is solely composed of the two operatorsx and
Q which both receive a physical meaning if we interprete`2(aZ) as the space of functions
on a (physical) space lattice.x is the position operator and−iQ the natural candidate for
the momentum operator (see also [16]). This is the basis for a discrete version of quantum
mechanics. Whereas ordinary quantum mechanics has a continuous position space, discrete
quantum mechanics lives on a lattice. Quantum mechanical models on a lattice should then
be modelled with the selfadjoint operatorsx and−iQ. These satisfy commutation relations
which are different from the canonical ones. Still missing, however, is a general recipe to
quantize a (discrete) mechanical system, analogous to canonical quantization. But what is
the meaning of the representation given byx̂ and−iQ? Basically it just offers us a way to
get, apparently, close to the results of ordinary quantum mechanics within the framework of
discrete quantum mechanics. That this representation is not equivalent to the Schrödinger
representation means that, within the framework of discrete quantum mechanics, we cannot
reproduce ordinary quantum mechanics rigorously, at least not in the way attempted in this
section. In fact, we have found rather drastic deviations, in particular a kind of spectrum
doubling, a familiar problem in lattice field theories [9, 10].

7. Conclusions

In this paper we have pointed out that there is an apparently widely unknown mathematical
scheme, called umbral calculus, behind recent work [4, 5] on discretization of differential
equations and physical continuum models. Using several examples we have discussed its
prospects and shortcomings. By choosing delta operators different from those used in these
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papers, alternative discretizations can be obtained. They have not been worked out in detail
yet.

Discretization of a continuum theory breaks the continuous spacetime symmetries which
play a crucial role in (non-gravitational) quantum field theory. There have been attempts to
find a discrete analogue of spacetime symmetries for lattice theories such that essential
features of the continuum group structures are maintained. Discretizations of Lorentz
transformations were considered in [17], for example. In [18] the Poincaré group acts
on an ensemble of lattices (see also [19] for a related point of view). Umbral calculus
offers a different way to implement symmetries on lattices (see also [5]).

Umbral calculus provides us with certain classes of representations of the canonical
commutation relations. It is therefore of potential interest for quantum mechanics and
quantum field theory. Among the variety of umbral maps which we have at our disposal,
the one determined by (5.4) with the central difference operator is of special interest (see
also [5]). In this case we have a representation of the canonical commutation relations
constructed from the position and the momentum operator on a lattice. This suggested a
kind of embedding of ordinary quantum mechanics into a formalism for quantum mechanics
on a lattice and thus a discretization of quantum mechanical systems which is different from
conventional ones (see [20], for example). The representation of the canonical commutation
relations obtained in this way is, however, not unitarily equivalent to the Schrödinger
representation. As a consequence, the image of ordinary quantum mechanics under the
umbral map cannot reproduce the results of the former rigorously. We revealed a kind of
spectrum doubling similar to what is known in lattice field theories. This may be regarded
as a negative feature. In any case, we believe that this is an interesting example of a
representation of the canonical commutation relations by selfadjoint operators which is not
equivalent to the Schrödinger representation. Furthermore, our analysis sheds some light
on the work in [5] where this representation has been used. The umbral framework yields
many more examples, of course, which can be analysed analogously to the example which
we selected in section 6.
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Appendix. On the ∗-product associated with the forward discrete derivative delta
operator

Let x be the canonical coordinate function on a lattice with spacingsa. A function f (x)
for which the finite difference analogue of the Taylor series expansion (Gregory–Newton
formula) exists can be written as follows,

f (x) =
∞∑
n=0

fnx
n =

∞∑
k=0

Fkx
(k) (A.1)

where we have used

xn =
n∑
k=0

S(n, k)an−kx(k). (A.2)
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The coefficientsS(n, k) are the Stirling numbers of the second kind (S(n, 0) = 0 when
n > 0, S(n, n) = 1). The coefficientsFk in (A.1) are given by

Fk =
∞∑
m=0

fk+mS(k +m, k)am. (A.3)

The equation (A.1) can also be expressed as

f (x) = F̃ (x) (A.4)

where

F(x̂) =
∞∑
k=0

Fkx̂
k. (A.5)

The ∗-product of two functions ofx is then given by

(f ∗ h)(x) = (F̃H)(x) =
∞∑

k,`=0

FkH`x
(k+`) (A.6)

and the r.h.s. can be written as a power series inx with the help of

x(n) =
n∑
k=0

s(n, k)an−kxk (A.7)

wheres(n, k) are the Stirling numbers of the first kind.
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